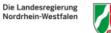
Projekt EcoHum - Miscanthus an alternative for potting soil?

Laufzeit Januar 2022 – Dezember 2022

11. Tagung des Internationalen Vereins für Miscanthus und mehrjährige Energiegräser e.V.



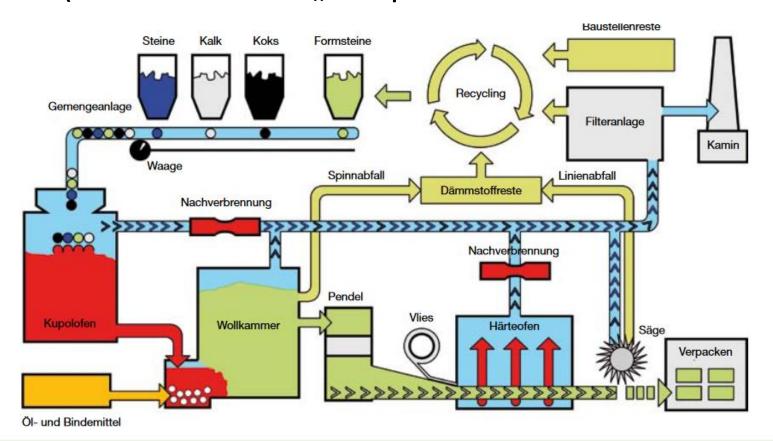
Motivation und Problemstellung

- Intensivgartenbau ist ein bedeutender Wirtschaftsfaktor in NRW
- Bedarf an Substraten f
 ür verschiedene Produktionsverfahren

Substrate basieren auf ressourcenverbrauchenden Rohstoffen:

Torfabbau verursacht Verluste:

von Feuchtgebieten als wichtige CO₂ Senke von seltenen Tier- und Pflanzenarten



Problemstellung II

Steinwolle: Energieverbrauch bei Herstellung und Recycling

(ca. 1500°C zum "Verspinnen" der Basaltschmelze)

Lösungsansätze von EcoHum

• Verwertung von geeigneten NaWaRo ...

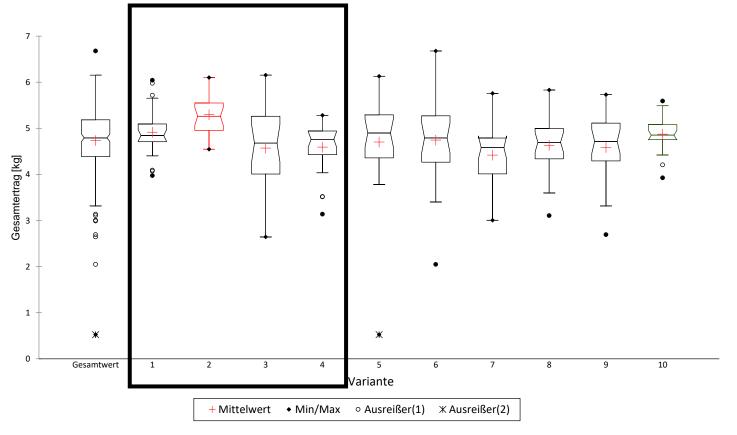
Lösungsansätze von EcoHum

... und Reststoffen (Recycling)

Kaskadennutzung / Upcycling

Das Projekt EcoHum

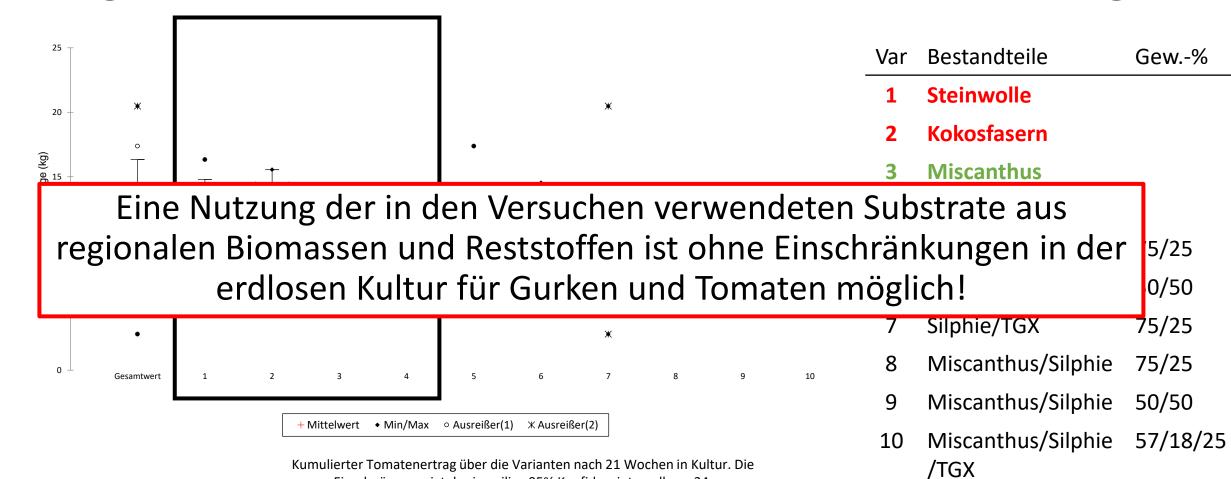
- Campus Klein-Altendorf der Universität Bonn: Anbauversuche mit Substraten und Substratmischungen für Gurken, Tomaten, Erdbeeren und Containerware / Baumschulen
- **HGoTECH GmbH**: Projektleitung, Nährstoffdynamik, insbesondere N
- bio innovation park Rheinland e.V.
 Öffentlichkeitsarbeit, ökonomische Bewertung, Beratung und Praxiskontakte zum Zwischenhandel und Gartenbaubetrieben



Ergebnisse der Gurkenkultur – Gesamtertrag

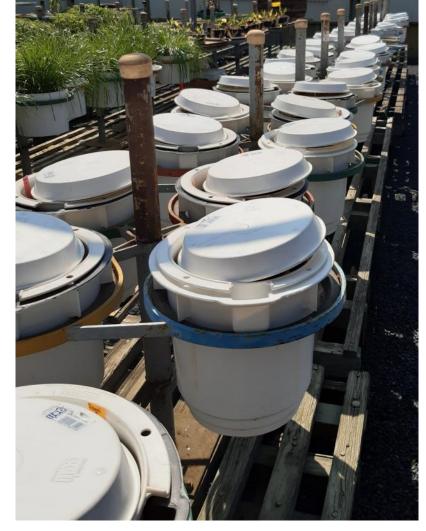
Kumulierter Gurkenertrag über die Varianten nach 70 Tagen in Kultur. Die Einschnürung zeigt das jeweilige 95% Konfidenzintervall. n = 24.

Var	Bestandteile	Gew%
1	Steinwolle	
2	Kokosfasern	
3	Miscanthus	
4	Silphie	
5	Miscanthus/TGX	75/25
6	Miscanthus/TGX	50/50
7	Silphie/TGX	75/25
8	Miscanthus/Silphie	75/25
9	Miscanthus/Silphie	50/50
10	Miscanthus/Silphie	57/18/25
	/TGX	9



Ergebnisse der Tomatenkultur – Gesamtertrag

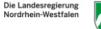
Einschnürung zeigt das jeweilige 95% Konfidenzintervall. n = 24.

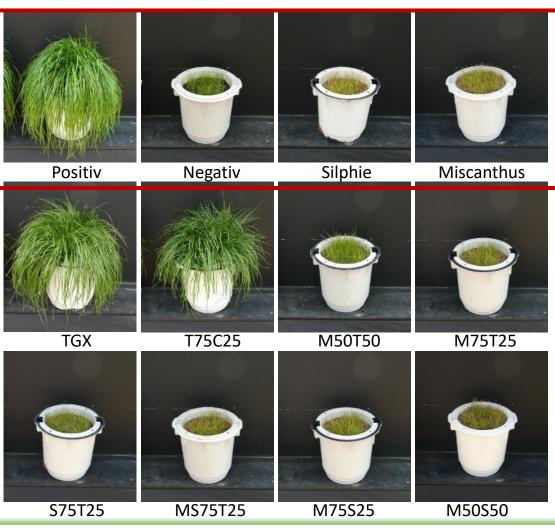


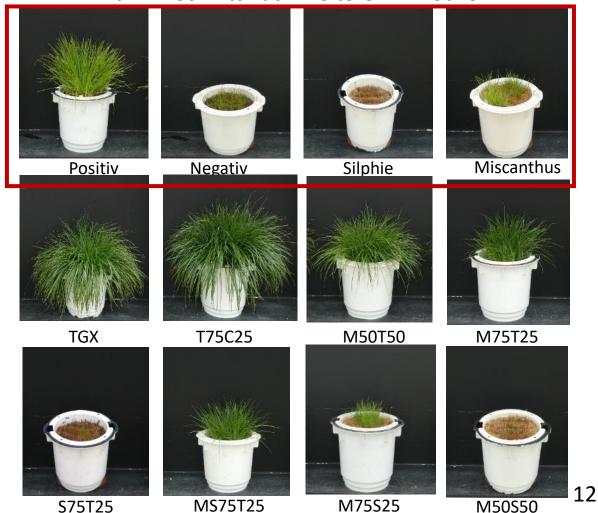
10

Substrat	Mischungsverhältnis [Massen-%]	Nmin [g/Gefäß]
Positiv-Kontrolle (Topferde 1,5)	100	1,3
Negativ-Kontrolle (Nullerde)	100	0
Silphie	100	2,6
Miscanthus	100	2,6
TGX	100	
TGX/Champost	75/25	
Miscanthus/TGX	50/50	2,6
Miscanthus/TGX	75/25	2,6
Silphie/TGX	75/25	2,6
Miscanthus/TGX	75/25	2,6
Silphie/TGX	75/25	2,6
(Miscanthus/Silphie)/TGX	75/25	2,6
Miscanthus/Silphie	75/25	2,6
Miscanthus/Silphie	50/50	2,6

- 14 Varianten x 5 Wiederholungen = 70 Gefäße
- 3 Beerntungen







11

Zum 1. Schnitt nach 6 Wochen

Zum 2. Schnitt nach weiteren 4 Wochen

Eindruck der Wasserführung in Miscanthus

70% WHK 100% WHK

→ Bei 70% der WHK (d.h. 70% der Poren wassergefüllt) Gradientbildung! Oben trocken – unten nass!

70% WHK 100% WHK

→ Biomasseertrag bei 100%-Bewässerung um 61% höher!

Stickstoffsperre und C/N Verhältnisse

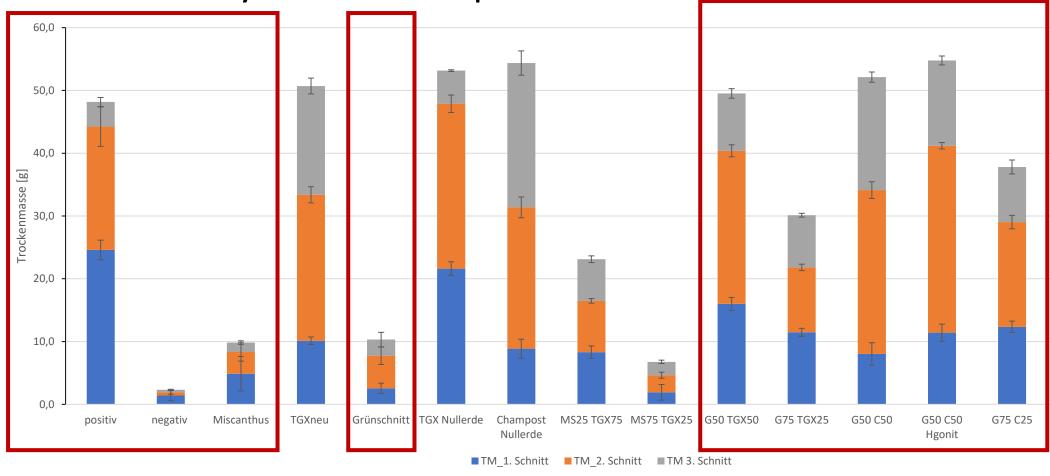
Test substrate	C/N Ratio
Miscanthus unused	264
Micanthus after 70 days fertigation	136
(cucumber)	
Silphium unused	133
Wheat straw	100
Silphium after 6 weeks fertigation	71
(cucumber)	
Corn stover	57
Commercial peat substrate (1 g salt /	40
liter)	
Mature alfalfa hay	27
Beef manure	17

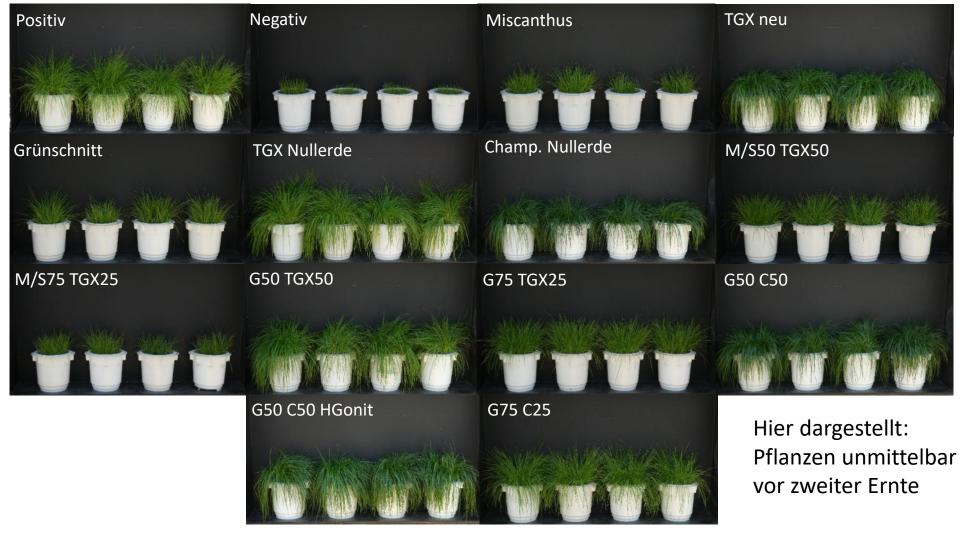
- Bedeutende Verbesserung der CN Ratio
- weniger hydrophob
- Nach Tomatennutzung vermutlich noch besser

Ungefährer Zielbereich, der vielversprechend ist

Substrat	Mischungsverhältnis [Vol%]	Nmin [g/Gefäß]
Positiv-Kontrolle (Topferde 1,5)	100	1,3
Negativ-Kontrolle (Nullerde)	100	
Miscanthus (70 Tage Gurke)	100	1,3
TGX neu	100	1,3
Grünschnitt-Kompost	100	1,3
TGX alt/Nullerde	Pos.KontrN-Niveau	1,3
Champost/Nullerde	Pos.KontrN-Niveau	1,3
(Miscanthus/Silphie 70 Tage Gurke)/TGX alt	50/50	1,3
(Miscanthus/Silphie 70 Tage Gurke)/TGX alt	75/25	1,3
Grünschnitt-Kompost/TGX alt	50/50	1,3
Grünschnitt-Kompost/TGX alt	75/25	1,3
Grünschnitt-Kompost/Champost	50/50	1,3
Grünschnitt-Kompost/Champost HGonit	50/50	1,3
Grünschnitt-Kompost/Champost	75/25	1,3

- 14 Varianten x 4 WDH = 56 Gefäße
- 4 Beerntungen
- Fokus auf stärker abgebaute / zersetzte Ausgangsmaterialien und "gebrauchte" Substrate aus der Gurkenkultur
- Außerdem Grünschnittkompost mit vermutlich ähnlichen Eigenschaften wie "gebrauchter" Miscanthus
- Entsprechend weniger N-Düngung als im ersten Versuch





Zusammenfassung

- "Rohe" Miscanthushäcksel eignen sich nicht gut als Ausgangssubstrat für Topferden (starke Stickstoffsperre, schlechte Wasserführung)
- Angerottete (oder anders aufgeschlossene) Miscanthushäcksel haben deutlich verbesserte Eigenschaften und eignen sich mindestens als Mischungspartner in Erdmischungen
- Wichtige Eigenschaften anderer Mischungspartner sind:
 - Ausreichende Menge leicht verfügbarer Stickstoff
 - Feineres, hydrophiles Material um die Wasserführung zu optimieren
 - Etwas Ton als Ca und Mg Quelle und um die KAK zu erhöhen

