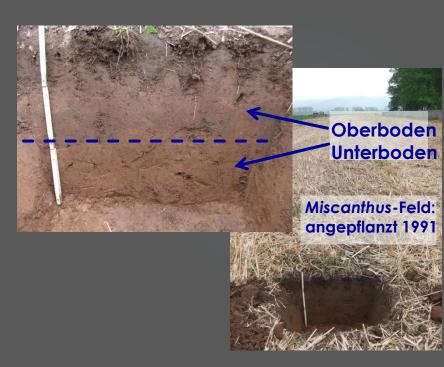
Miscanthus – Bedeutung für Boden und Landschaft

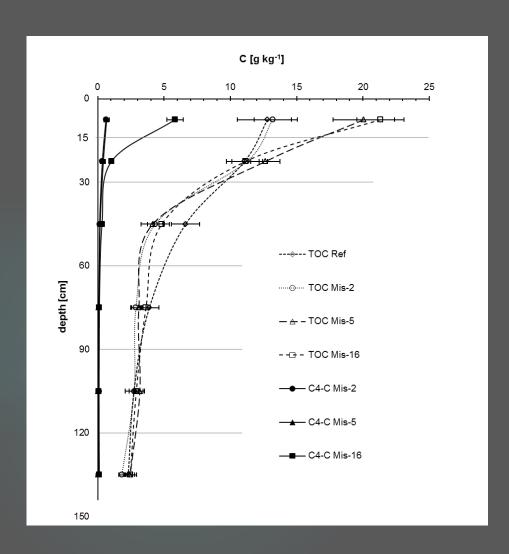
CHRISTOPH EMMERLING, TRIER emmerling@uni-trier.de

Miscanthus – Bedeutung für Boden und Landschaft

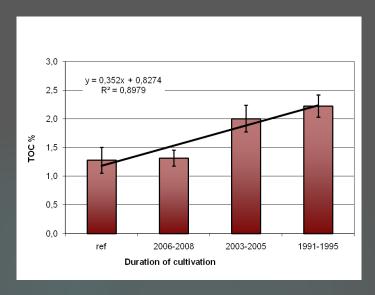
- A. ÖL Boden
- Speicherung organ. Bodensubstanz
- Förderung Bodengefüge (insbes. Unterboden)
- Hot spot Bodenbiologie
- B. ÖL Landschaft
- Brutrevier für Vögel (meso-skalig)
- Einbindung in Polyculture (macro-scalig)


Miscanthus – Bedeutung für den Boden Untersuchungsgebiet "Kenner Flur": Fluvisols, Ls

Einjährige Vergleichskulturen

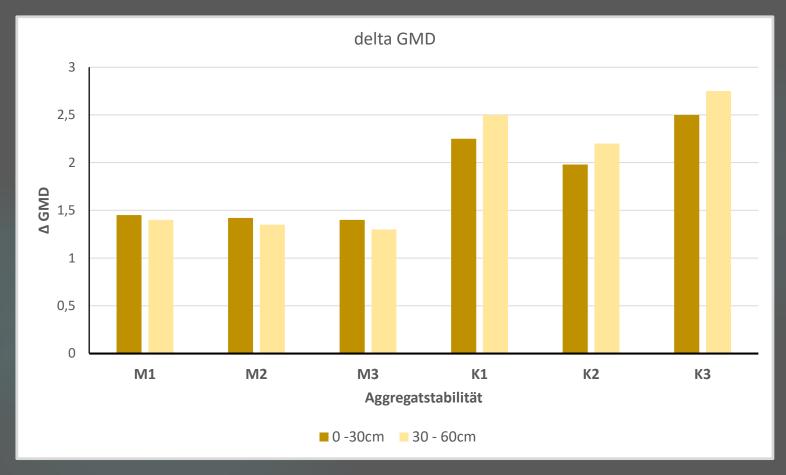

Miscanthus

Miscanthus ist eine ausdauernde Pflanze. Die Bestände können ca. 25 Jahre lang genutzt werden. In dieser Zeit reichern die Böden große Mengen an Humus aus Stoppelresten und Blättern an (Farbunterschied!)


Ökosystemdienstleistungen Miscanthus (1):

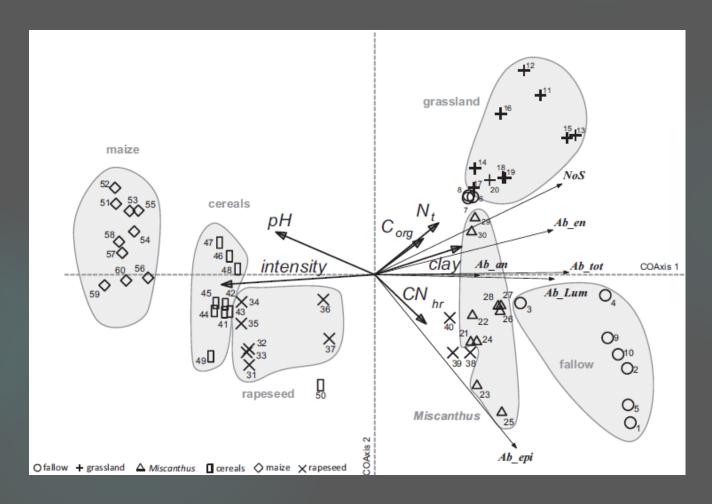
Ergebnisse der ¹³C – Isotopenanalyse:

- Mit zunehmender Dauer des
 Anbaus reichert sich Kohlenstoff im
 Boden bis zu einer Tiefe von 60 cm
 signifikant an
- Nach 16 Jahren Miscanthus-Anbau waren insgesamt 17.7 t C ha⁻¹
 Miscanthus C im Boden gespeichert
- Rate beträgt 1.1 t C ha⁻¹ Jahr⁻¹
- Dies ist ein regionaler Beitrag zur Klimabilanz
- ➤ Vgl. hoher CO₂-Credit

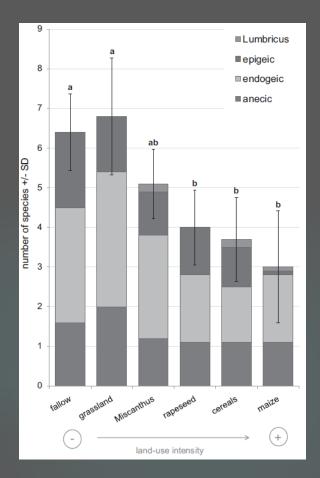

Ökosystemdienstleistungen Miscanthus (1):

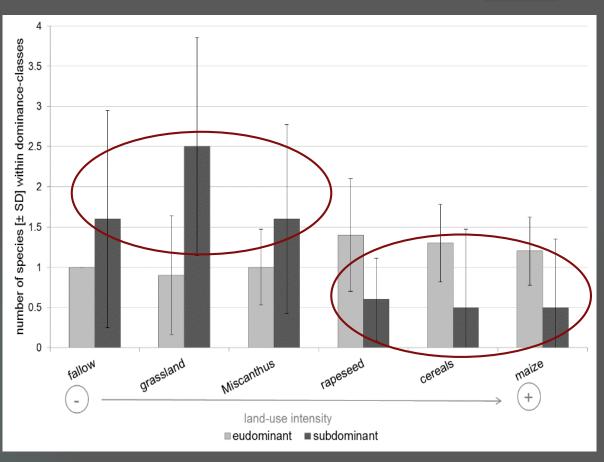
Klimawirksame C-Speicherung bei Miscanthus (1.1 t Misc-C ha⁻¹ yr⁻¹; delta ¹³C in 0 to 60 cm Tiefe) (Felten & Emmerling, 2012)

 Kahle et al., 2001 McCalmont et al., 2015

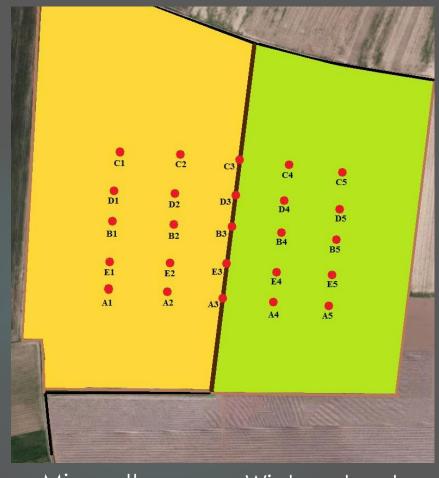

Ökosystemdienstleistungen Miscanthus (2):

Verbesserte Gefügestabilität in 0 – 60cm Tiefe bei Miscanthus im Vergleich zu Getreide


(Lisa Rheinheimer)


Ökosystemdienstleistungen Miscanthus (3):

▶Bodenbiodiversität (Zersetzerorganismen; Lumbriciden) unter Miscanthus vergleichbar mit Brache und Grünland


Ökosystemdienstleistungen Miscanthus (3):

Anzahl der Regenwurmarten (Mittel +/- S.D.) in Abhängigkeit von der Landnutzung

Abnahme der Anzahl subdominanter Arten bei gleichzeitigem Anstieg eudominanter Arten bei unterschiedlicher Landnutzung

Miscanthus

Winter wheat

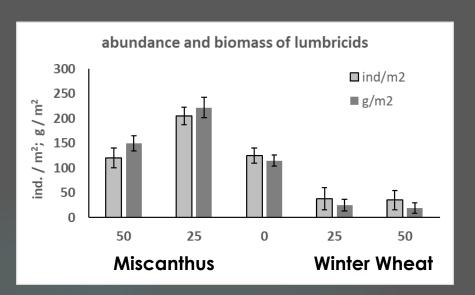
Sampling of earthworms and Macro-arthropods in Apr – May 2017

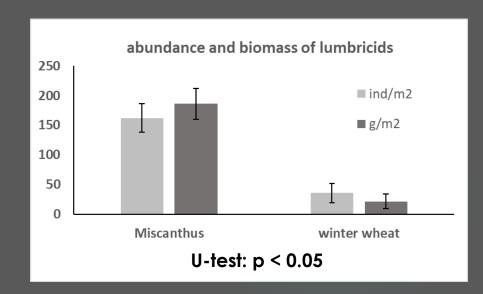
Earthworms: hand-sorting the

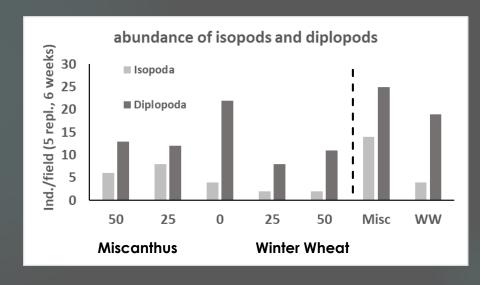
top soil + AITC

Isopods, Diplopods: Barber pitfall

traps


A - C; 1 ... 2 : Miscanthus

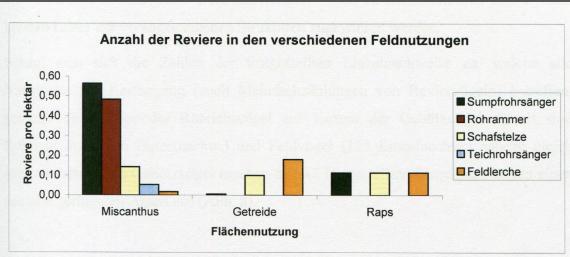

A - C; $\overline{4 \dots 5}$: winter wheat


A – C; 3 : transition zone

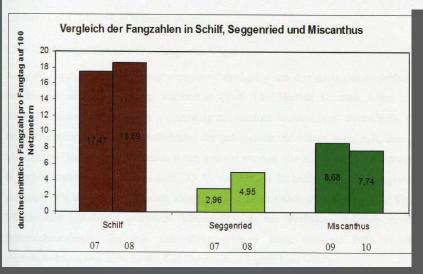
Distance of 25m between each sampling point

Number & biomass of earthworms, isopods & diplopods

Species data


Species	Miscanthus	Transition zone	Winter wheat	
Earthworms				
Lumbricus terrestris	37	17	16	
Lumbricus castaneus	8	1		
Lumbricus rubellus	33	6	2	
Aporrectodea longa	114	44	22	
Aporrectodea caliginosa	77	31	25	
Aporrectodea rosea	10	4	2	
Aporrectodea icterica	5	2		
Aporrectodea limicola	3			
Allolobophora chlorotica	25	5		
Allolobophora cupulifera	2			
Proctodrilus antipae	2	1		
Octolasion cyaneum	4	1		
Octolasion tyrtaeum	2			
Diplopoda				
Cylindroiulus caeruleocinctus	7	6	11	
Cylindroiulus nitidus	5	4	5	
Ophyiulus pilosus	3	1		
Tachypodoiulus niger	3			
Craspedosoma alemannicum	1	2	2	
Polydesmus angustus	2	3	4	
Polydesmus incontans	2	3		
Brachydesmus superus	2	4	3	
Isopoda				
Philoscia muscorum	2			
Hyloniscus riparius	2	1		
Trachelipus rathkei	4	1	1	
Porcellium conspersum	3	1	1	
Ligidium hypnorum	1			
Armadillidium vulgare	2	1	1	
Species No. earthworms	13	10	5	
Species No. diplopods	8	7	5	
Species No. isopods	6	4	3	
Total No. species	27	21	13	

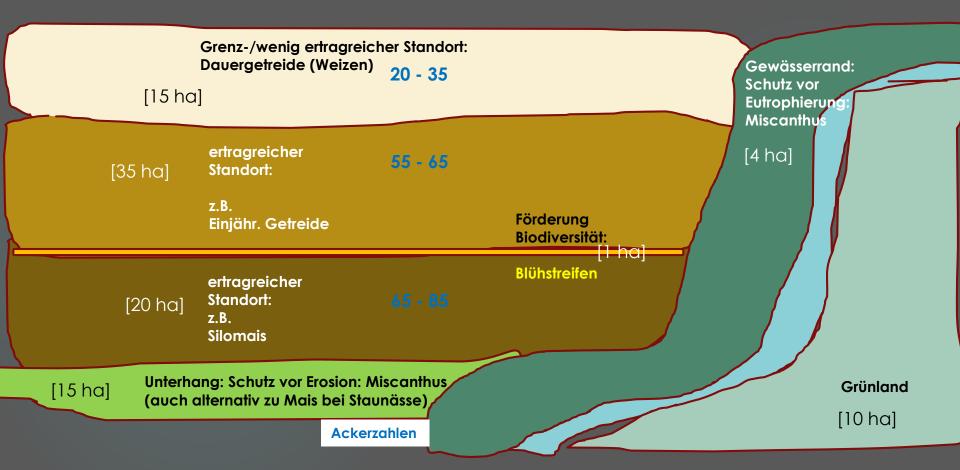
Detritivore Bodenorganismen (Regenwürmer, Isopoden, Diplopoden) wurden bzgl. Artenzahl, Individuenzahl und Biomasse in Böden unter Miscanthus im Vergleich zu einjährigen Kulturen signifikant gefördert


Site properties		
	Miscanthus	Winter wheat
рН	5.6 5.9	6.3 6.7
C/N ratio (soil)	14.1 16.5	10.5 13.3
C/N ratio (litter, plant residues)	115	78

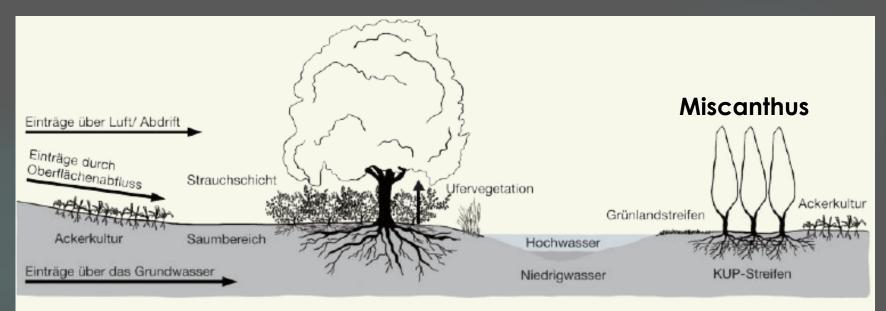
- Bestimmende Faktoren für Regenwürmer:
 Bodenbearbeitung Bodenbedeckung/Nahrungsangebot
 Bodenwasserhaushalt ?
- Bestimmende Faktoren für Isopoden und Diplopoden:
 Bodenbearbeitung -- Bodenbedeckung/Nahrungsangebot
 -- Fangperiode ?

Miscanthus – Bedeutung für die Landschaft

Tier	Flächennutzung	Fläche (ha)	n OP reel	n OP erwartet	Ergebnis
Rohram. 045	Getreide	3,00	15,00	26,99	Meidung
	Miscanthus	1,25	32,00	13,76	Präferenz
	Raps	1,53	5,00	11,25	Meidung
	Summe	5,78	52,00	52,00	FG2**
Rohram. 093	Getreide	1,95	27,00	41,59	Meidung
	Miscanthus	1,52	46,00	32,41	Präferenz
	Summe	3,47	74,00	74,00	FG1**
Rohram. 102	Getreide	3,64	14,00	22,16	Meidung
	Miscanthus	3,10	27,00	18,84	Präferenz
	Summe	6,74	41,00	41,00	FG1**
Rohram. 317	Getreide	19,67	38,00	36,02	~
	Miscanthus	13,76	26,00	25,20	~
	Raps	1,52	0,00	2,78	~
	Summe	34,95	64,00	64,00	Nicht signifikan


Sumpfrohrsänger : Marsh Warbler Rohrammer : Common Reed Bunting

Diplomarbeit Anke Luhmer


Miscanthus – Bedeutung für die Landschaft

Herausforderungen	Miscanthus	Silphie	Blütenstreifen	Dauerweizen	
Bodenerosion vermeiden	+++	+++	+	++	
Schadverdichtung minimieren	+++	+++ +++		++	
Eutrophierung/Nitratausträge minimieren	+++	+++	O	o	
Humusverlust vs. C-Sequestrierung	+++	++	+	++	
THG-Emissionen verringern, Beitrag zum Klimaschutz	0	++	0	0	
(Unter-) Bodengefüge schonen	+++	++	++	+	
Diversitätsverlust (Landschaft, Boden) entgegensteuern	++	+++	+++	+	

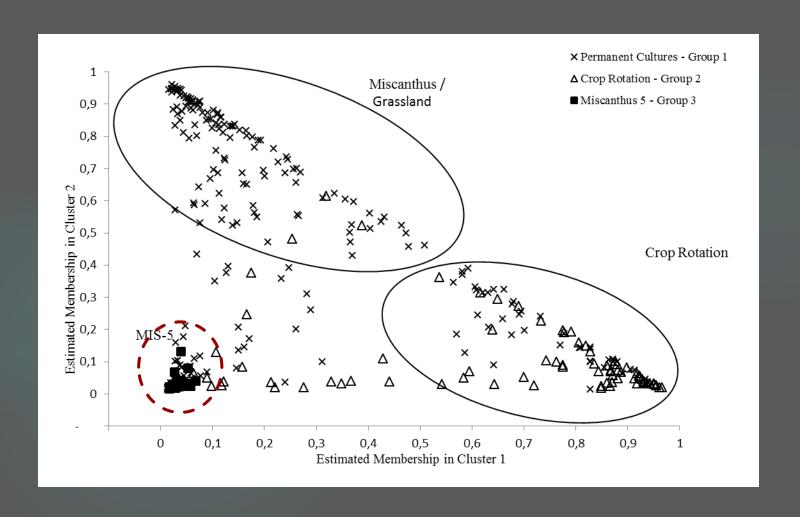
Angewandtes Polyculture – Integration von Miscanthus in etablierte Anbausysteme

Beispiel: Umsetzung der Gewässerrahmenrichtlinie – Ersatz von KUP-Streifen durch Miscanthus

Durch die Bäume werden Nährstoffe (z.B. Phosphor, Stickstoff), Schadstoffe (z.B. Pflanzenschutzmittel) und Sedimente zurückgehalten. Im Fall von Stickstoff (insbesondere Nitrat) kann die Reduktion bis zu 75 % und mehr betragen. Die Beschattung senkt die Wassertemperatur im Sommer, so werden Algenblüten vermieden und die Wasserqualität verbessert. Damit verringert sich der Pflegeaufwand durch weniger Bewuchs und verminderter Verschlammung. Auf einer Uferseite sollte allerdings ein Streifen zur Gewässerpflege freigelassen werden.

Offene Fragen:

- > Life cycle Assessment für verschiedene Verwertungswege
- Legacy-effect nach Kulturwechsel; Implikationen für CO₂-Credits
- Festlegung valider CO₂-Credits


Expected horizontal dispersal of Aporrectodea longa

Summary of the mean horizontal dispersal of different earthworm species (m yr $^{-1}$) in various habitats depending on their ecological classification (ep = epigeic, en = endogeic, an = anecic; acc. to Bouché 1977)

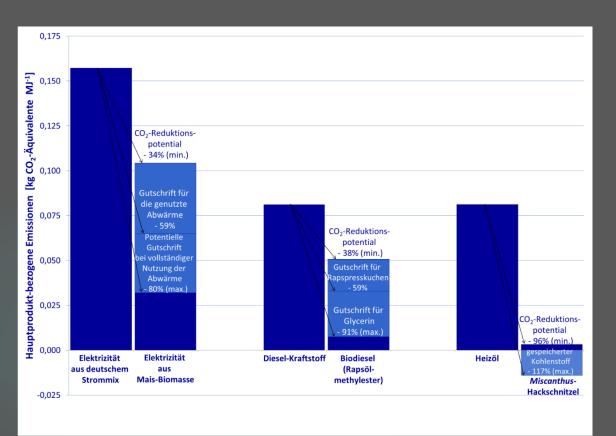
Species (ecological class.)	Distance (m yr ⁻¹)	Environment / soil / vegetation	Reference
Aporrectodea caliginosa (en)	6	polder soil	van Rhee (1969)
	3.5 - 5	irrigated desert soil	Ghilarov & Mamaev (1966)
	10	pasture	Stockdill (1982)
	9	polder grassland	Hoogerkamp et al. (1983)
	2.5 - 10	grassland / reclaimed peat	Curry & Boyle (1987)
	7	arable polder soil	Mainissen & van den Bosch (1992)
Allolobophora chlorotica (en)	4	polder soil	van Rhee (1969)
Octolasion cyaneum (en)	8	grassland and arable soils	Graff (1961)
Lumbricus rubellus (ep)	>10	peat soil	Curry & Boyle (1987)
	14	arable polder soil	Marinissen & van den Bosch (1992)
Lumbricus terrestris (an)	9	arable soil	Mater & Christensen (1988)
	4	polder grassland	Hoogerkamp et al. (1983)
Aporrectodea longa (an)	7 (6-8) *	laboratory	this study

^{(*): 6} m without vegetation (- Miscanthus); 8 m with vegetation (+Miscanthus) with the following assumptions: 193 days > 10°C (German Weather Service, average of the years 2001-2010, Trier region); minus approx. 93 days of obligate diapause for A. longa (Edwards & Bohlen 1996)

STRUCTURE – Analysis of the genetic diversity of *Aporrectodea longa* populations revealed from polymorphic microsatellite markers

- Short, non coding DNA-Sequences
- SSR (Simple Sequence Repeats)
- Most common form of repetitive DNA
- Length polymorphism
- Consist of 2 4 nucleotids in 10 100 fold repetition
- Example:

TAGTAGTAGTAGTAGTAG....


CACACACACACACACACA....

Well tracking of inter- and intra-specific differences

Microsatellites used in the investigation encoding specifically for *Aporrectodea longa*

Locus	Repeat motif	Allele size range	Most frequent allele size	Number of alleles	H _o	H _E
H09_Alo_3f	(ATG) ₆ (ACG) ₅ (ATG)	236 - 251	242	5	0,813	0,625
H07_Alo_5_2	(CGCT) ₅	248 - 256	256	3	0,344	0,466
D12_Alo_5	(TTA) ₈	200 - 207	201	5	0,500	0,688
C06_Alo_6	(TTA) ₃₀	244 - 316	295	12	0,828	0,849
C04_Alo_6_2	(ATT) ₂₃	322 - 361	328, 331	11	0,679	0,803
E05_Alo_5	(CAT) ₃ (CAG) ₆	214 - 220	214	3	0,407	0,394
C04_Alo_6	(TTA) ₂₉	212 - 260	221	15	0,813	0,891
C10_Alo_1f	(GTT) ₁₂ (GAT) ₃₂	280 - 319	295	10	0,781	0,842
A08_Alo_6	(TCA) ₃₃	248 - 275	251	5	0,469	0,660 *
B02_Alo_4f	(GA) ₅ (ACAG) ₁₄	315 - 343	321	7	0,333	0,380
E04_Alo_6	(AGAC) ₁₈	182 - 215	212	3	0,308	0,595 *

Wie grün sind Energiepflanzen?

- CO₂-eq Reduktionspotential hängt eng mit der Nutzung der Folgeprodukte zusammen
- Miscanthus Anbau wirkt als
 CO₂ Senke
- Wichtiger regionaler Beitrag für den Globalen Klimaschutz

Energiebereitstellung aus fossilen Ressourcen im Vergleich mit den diese jeweils ersetzenden Hauptprodukten aus dem Energiepflanzenanbau [= Gutschrift]